giovedì, settembre 24, 2009
lunedì, settembre 21, 2009
Materiale VAT
cliccare qui
Ripasso riparti II C
Oggi abbiamo ripassato i riparti se vi serve una sintesi eccola!
I Riparti.
I riparti sono delle operazioni matematiche che permettono la ripartizione di valori proporzionalmente e degli elementi dati. Tali operazioni matematiche risulteranno fondamentali nella determinazione delle quote di ripartizione delle spese sostenute in opere consortili. I riparti possono essere fondamentalmente di 5 tipi:
Riparto semplice diretto;
Riparto semplice inverso;
Riparto composto diretto;
Riparto composto inverso;
Riparto misto (semplice e composto).
Riparto semplice diretto.
La somma da ripartire verrà suddivisa in maniera direttamente proporzionale ad una sola serie di dati. Si indicherà con S la somma da ripartire; le quote di ripartizione con X, Y, Z tali quote dovranno essere suddivise in maniera direttamente proporzionale: X ad a; Y a b; Z a c
Si imposteranno tante proporzioni quante sono le quote di ripartizione:
S : (a+b+c) = X : a
S : (a+b+c) = Y : b
S : (a+b+c) = Z : c
Come si può notare la prima parte di ogni proporzione è uguale e per questo viene detta Quoziente fisso. Per la proprietà fondamentale delle proporzioni (il prodotto dei medi è uguale al prodotto degli estremi):
X = S : (a+b+c) * a
Y = S : (a+b+c) * b
Z = S : (a+b+c) * c
Il che equivale a moltiplicare il quoziente fisso per i dati permettenti la ripartizione.
Q.f. * a = X
Q.f. * b = Y
Q.f. * c = Z
Logicamente X + Y + Z = S.
p.e. quattro proprietari fondiari di aziende agricole adiacenti (e di superficie simile) decidono la costruzione di una strada intrapoderale che li colleghi più rapidamente ed agevolmente al mercato. Il costo di £ 50.000.000 verrà suddiviso in maniera direttamente proporzionale alla lunghezza del tratto di strada utilizzato da ciascun proprietario fondiario.
Il proprietario X utilizza 260 m , il proprietario Y utilizza 320 metri, il proprietario Z utilizza 390 m , il proprietario W utilizza 450 m. Determinare le quote di spese spettanti a ciascun proprietario.
Q.f. = 50.000.000 / (260 + 320 + 390 + 450)
Proprietario X : Q.f. * 250 = £ 9.154.930
Proprietario Y : Q.f. * 320 = £11.267.605
Proprietario Z : Q.f. * 390 = £13.732.395
Proprietario W : Q.f. * 450 = £15.845.070
Logicamente, la somma delle quote di spesa spettanti ai vari proprietari fondiari sarà di £. 50.000.000
Riparto semplice inverso.
La somma da ripartire verrà suddivisa in maniera inversamente proporzionale ad una sola serie di dati. Indicando con S la somma da ripartire e con X, Y e Z le quote di ripartizione, in detto riparto X verrà suddiviso in maniera inversamente proporzionale ad a, Y verrà suddiviso in maniera inversamente proporzionale a b, Z verrà suddiviso in maniera inversamente proporzionale e c.
Prendendo il reciproco dei dati del problema, si trasformerà il riparto in semplice diretto, per cui il Quoziente fisso sarà:
Q.f. = S / (1/a+1/b+1/c), moltiplicando il Q.f. per il reciproco dei dati permettenti la ripartizione, si otterranno le quote di ripartizione:
Q.f. * 1/a = X
Q.f. * 1/b = Y
Q.f. * 1/c = Z
Logicamente, come già detto per il riparto semplice diretto, la somma delle quote di ripartizione deve coincidere con la somma da ripartire, ovvero: X + Y + Z = S
p.e. quattro allevatori decidono la costruzione di un pozzo per abbeverare il bestiame al pascolo. Il costo per la costruzione del pozzo ammonta a £50.000.000 che verrà suddiviso in maniera inversamente proporzionale alla distanza media di ciascun pascolo dal pozzo stesso. Il pascolo del primo proprietario dista 230 m; il secondo dista 350 m; il terzo 540 m; il quarto 270 m.
Determinare le quote di spesa spettanti a ciascun proprietario fondiario.
Il Quoziente fisso sarà: 50.000.000 / (1/230+1/350+1/540+1/270)
Il primo allevatore pagherà: Q.f.* 1/230 = £. 17.036.235;
il secondo allevatore : Q.f.* 1/350 = £. 11.195.240;
il terzo allevatore : Q.f.* 1/540 = £. 7.256.175;
il quarto allevatore : Q.f.* 1/270 = £. 14.512.350.
La somma delle quote di ripartizione sarà: £. 50.000.000
Riparto composto diretto.
La somma da ripartire verrà suddivisa in maniera direttamente proporzionale a due o più serie di dati. Indicando con S la somma da ripartire e con X, Y e Z le quote di ripartizione, in detto riparto:
X verrà suddiviso in maniera direttamente proporzionale ad a e l;
Y verrà suddiviso in maniera direttamente proporzionale a b e m;
Z verrà suddiviso in maniera direttamente proporzionale a c e m.
Il Quoziente fisso sarà: S / (a*l+b*m+c*n) come già visto per le altre forme di riparto:
Q.f. * (a*l) = X +
Q.f. * (b*m) = Y +
Q.f. * (c*n) = Z =
Logicamente: S = X + Y + Z
p.e. quattro proprietari di aziende agricole adiacenti decidono la costruzione di una strada intrapoderale che li colleghi più agevolmente al mercato. Il costo di £50.000.000 verrà suddiviso un maniera direttamente proporzionale non solamente alla lunghezza del tratto di strada utilizzato da ciascun proprietario ma anche alla superficie di ciascun fondo.
Il primo proprietario utilizza 150 m e presenta sup. 15.40.30;
il secondo proprietario utilizza 230 m e presenta sup. 8.30.90;
il terzo proprietario utilizza 360 m e presenta sup. 25.90.80;
il quarto proprietario utilizza 470 m e presenta sup. 9.90.50.
Determinare la quote di spesa di ciascun proprietario fondiario.
Q.f. = 50.000.000 / (150*15,403+230*8,309+360*25,908+470*9,905)
Il primo proprietario pagherà: Q.f. * (150*15,403) = £. 6.346.080;
il secondo proprietario pagherà:Q.f.* (230 * 8,309)= £. 5.249.110;
il terzo proprietario pagherà: Q.f. * (360*25,908) = £. 25.618.020;
il quarto proprietario pagherà:Q.f. * (470*9,905) = £. 12.786.790
La somma delle quote di ripartizione sarà: £. 50.000.000
Riparto composto inverso.
La somma da suddividere verrà ripartita in maniera inversamente proporzionale a due o più serie di dati. Indicando con S la somma sa ripartire, X, Y e Z le quote di ripartizione, in detto riparto:
X verrà suddiviso in maniera inversamente proporzionale ad a e l;
Y verrà suddiviso in maniera inversamente proporzionale a b e m;
Z verrà suddiviso in maniera inversamente proporzionale a c e n.
Prendendo il reciproco dei dati permettenti la ripartizione, si tramuterà il riparto composto inverso in composto diretto. Per cui Q.f. = S / (1/(a*l)+1/(b*m)+1/(c*n))
Q.f. * 1/(a*l) = X+
Q.f. * 1/(b*m) = Y+
Q.f. * 1/(c*n) = Z=
Logicamente: S
Quattro proprietari di aziende agricole adiacenti ad un torrente presentante periodici straripamenti decidono la costruzione di un argine che li protegga dalle acque. La spesa per la costruzione dell'argine ammonta a £50.000.000 e verrà suddivisa in maniera inversamente proporzionale sia alla distanza media di ciascuna azienda agricola dall'argine che dalla sua quota media sopra il livello del torrente.
La prima azienda dista 230 m e presenta quota 0,5 m;
la seconda azienda dista 320 m e presenta quota 1 m;
la terza azienda dista 310 m e presenta quota 0,75 m;
la quarta azienda dista 450 m e presenta quota 0,25 m.
Determinare la quota di spesa spettante a ciascun proprietario fondiario.
Q.f. = 50.000.000 / (1/(230*0,5)+1/(320*1)+1/(310*0,75)+1/(450*0,25))
Il primo proprietario pagherà: Q.f.* 1/(230*0,5) = £. 17.383.920;
il secondo proprietario pagherà:Q.f.*1/(320*1) = £. 6.247.345;
il terzo proprietario pagherà: Q.f.* 1/(310*0,75)= £. 8.598.500;
il quarto proprietario pagherà:Q.f.* 1/(450*0,25)= £. 17.770.235.
La somma delle quote di ripartizione sarà: £. 50.000.000
Riparto misto.
Per semplicità verrà trattato il solo riparto misto semplice. In detto riparto la somma da ripartire verrà suddivisa in maniera direttamente proporzionale ad una sola serie di dati ed in maniera inversamente proporzionale ad un'altra sola serie di dati. Indicando con S la somma da ripartire, con X, Y e Z le quote di ripartizione, in detto riparto:
X verrà suddiviso in maniera direttamente proporzionale ad a ed in maniera inversamente proporzionale ad l;
Y verrà suddiviso in maniera direttamente proporzionale a b ed in maniera inversamente proporzionale ad m;
Z verrà suddiviso in maniera direttamente proporzionale a c ed in maniera inversamente proporzionale ad n.
Interpolando fra loro i due tipi di riparti semplici visti si otterrà la soluzione di detto riparto:
Q.f. = S / ((a/l)+(b/m)+(c/n))
Q.f.* (a/l) = X+
Q.f.* (b/m) = Y+
Q.f.* (c/n) = Z=
Logicamente: S
p.e. quattro Comuni decidono la costruzione di un ponte che li colleghi più agevolmente alla rete viaria. La spesa di £50.000.000 (al netto del contributo statale) verrà suddivisa in proporzione diretta al numero di abitanti ed in proporzione inversa alla distanza media di ciascun Comune dal ponte.
Il primo Comune presenta 2.560 abitanti e dista 2,5 km;
il secondo Comune presenta 1.560 abitanti e dista 5,3 km;
il terzo Comune presenta 4.890 abitanti e dista 4.8 km;
il quarto Comune presenta 3.980 abitanti e dista 6.7 km:
Determinare le quote di ripartizione della spesa fra i vari Comuni.
Q.f. = 50.000.000 / ((2.560/2,5)+(1.560/5,3)+(4.890/4,8)+(3.980/6,7))
Il primo Comune pagherà: Q.f. * (2.560/2,5) = £. 17.467.730;
il secondo Comune pagherà:Q.f.* (1.560/5,3) = £. 5.020.940;
il terzo Comune pagherà: Q.f. * (4.890/4.8) = £. 17.378.175;
il quarto Comune pagherà:Q.f. * (3.980/6,7) = £. 10.133.155.
Come si può constatare la somma delle quote di ripartizione coincide con la somma da ripartire: £. 50.000.000
Questa caratteristica fondamentale dei riparti li fa associare al tipo di problemi difficilmente errabili. Con l'espletamento dei problemi relativi ai riparti si può ritenere concluso lo studio teorico di tutta la matematica finanziaria (e non) che può essere impiegata nella formulazione delle principali stime analitiche che il futuro perito potrà impiegare nella pratica estimativa. Verranno quindi affrontati problemi estimativi risolvibili con le poche formule matematiche conosciute e che dimostreranno come l'impiego della matematica finanziaria applicata a detti casi può condurre a risultati verosimili. Invero, più che ai risultati, conterà la capacità di calcolo dimostrata dall'operatore per cui si anticipa che le approssimazioni al valore trovato non verranno effettuate e che la parte descrittiva, fondamentale in qualsiasi tipo di stima, verrà trattata in altra sede.
fonte: http://www.istruzioneonline.it/archivio/estimo/3estimo2.htm
venerdì, settembre 18, 2009
Soluzioni test di ingresso IV C

TEST DI INGRESSO IVC
Dì quali tra queste operazioni va registrata in P.D e quali possono essere ignorate e perché:
Si stipula un contratto di vendita
Applico dei francobolli a delle lettere
Si versano dalla cassa dei soldi nel c/c
l'imprenditore preleva dei soldi per sé dal c/c aziendale
Il primo fatto può essere ignorato perché il credito verso clienti nasce ufficialmente con l'emissione della fattura gli altri fatti vanno registrati perché originano una variazione finanziaria (numeraria)
quali tra questi conti sono dei costi:
merci c/vendite
debiti v/fornitori
valori bollati
commissioni bancarie
costi di incasso
spese bancarie
rimborsi costi di vendita
iva c/liquidazione
spese di trasporto
fornitori c/anticipi
debiti per cauzione
Spiegami che cos'è un ricavo
Il ricavo è una variazione positiva di un elemento finanziario non compensata da una variazione opposta equivalenteSpiegami che cos'è un valore finanziario
Esegui le seguenti scritture:
- Compro merci per 3000€ + iva 20% spese di trasporto non documentate a mio carico 200€
d iva ns credito 640
a debiti v.fornitori 3840
- Vendo merci per 2000€ + iva 20% spese di trasporto non documentate a carico del compratore 200€
a merci c.vendita 2000
a rimborsi costi di vendita 200
a iva ns debito 440
- Incasso il credito del punto b con assegno
a crediti v.clienti 2640
- Giro l'assegno del punto c per pagare il fornitore del punto a, il saldo pago in contanti
a assegni 2640
a cassa 1200
- Compro un automezzo per 20000€ + iva 20%
d iva ns credito 4000
a deb. v.fornitori 24000
- al termine dell'anno ammortizzo l'automezzo per il 20%
a fondo ammortamento automezzi 4000
- vendo l'automezzo del punto e a 18000€ + iva 20%
a automezzi 4000
d crediti diversi 21600
a automezzi 16000
a plusvalenze 2000
a iv ns debito 3600
- Ricevo fattura enel per 300€ più iva 20%
d iva ns credito 60
a deb v.fornitori 360
- pago la fattura enel con la banca
a banca 360
- pago un assicurazione sul fabbricato di 1000€ al 1/11
a cassa 1000
- al 31/12 registro la scrittura di assestamento opportuna riferita al punto j
a assicurazioni 833
- la mia iva a credito è pari a 2000 quella a debito è pari a 3000 liquido l'iva e la verso
a iva ns credito 2000
a iva c. liq 1000
d iva c.liq. 1000
a banca 1000
In linea generale correggere le rilevazioni effettuate secondo il principio di cassa che non rispettano la competenza economica
Descrivi quali sono le categorie presenti in una stato patrimoniale
Nell'attivo (investimenti) troviamo le immobilizzazioni e l'attivo circolante nel passivo (fonti) troviamo il capitale proprio, le passivita consolidate e le passività correnti